

Geometric conditions for the observability of the electromagnetic Schrödinger equation on \mathbb{T}^2

Jingrui Niu

(Team CAGE, Inria & Sorbonne Université)

Joint work with Kévin Le Balc'h, Chenmin Sun

Seminar brèves de CAGE, 16/09/2025

Part I: Problem & Results

Part II: Sketch of the Proof

Part III: Comments & Perspectives

Part I : Problem & Results

Electromagnetic Schrödinger equation

- The model :

$$\begin{cases} i\partial_t u = H_{\mathbf{A}, V} u & \text{in } \mathbb{R}_t \times \mathbb{T}^2, \\ u(0, \cdot) = u_0 & \text{in } \mathbb{T}^2, \end{cases} \quad (1)$$

- $H_{\mathbf{A}, V}$: The electromagnetic Schrödinger operator given by

$$H_{\mathbf{A}, V}(z) := \left(\frac{1}{i} \nabla - \mathbf{A}(z) \right)^2 + V(z), \quad z = (x, y) \in \mathbb{T}^2, \quad (2)$$

$$V \in C^\infty(\mathbb{T}^2, \mathbb{R}), \quad \mathbf{A} = (A_1, A_2) \in C^\infty(\mathbb{T}^2, \mathbb{R}^2). \quad (3)$$

- Zero-flux magnetic field : $B := \nabla \wedge \mathbf{A} = \partial_x A_2 - \partial_y A_1$, so that $\int_{\mathbb{T}^2} B = 0$.

- Gauge-invariance : $\mathbf{A} \mapsto \mathbf{A}_\chi := \mathbf{A} + \nabla \chi$ for any $\chi \in C^\infty(\mathbb{T}^2)$,

$$e^{-itH_{\mathbf{A}_\chi, V}} = e^{i\chi} e^{-itH_{\mathbf{A}, V}} e^{-i\chi}.$$

- Main question : **Observability** for the Schrödinger propagator $e^{-itH_{\mathbf{A}, V}}$ on $L^2(\mathbb{T}^2)$.

Brief review of literature for the Schrödinger observability on \mathbb{T}^d

(Obs) $_{T,\omega}$: For $T > 0, \omega$ open. $\exists C_{T,\omega,\mathbf{A}} > 0$, s.t. for any $u_0 \in L^2$,

$$\|u_0\|_{L^2}^2 \leq C_{T,\omega,\mathbf{A}} \int_0^T \|e^{-itH_{\mathbf{A},V}} u_0\|_{L^2(\omega)}^2 dt$$

- **Lebeau '92** : Geometric control condition (GCC) is sufficient : (GCC) allows to observe h -oscillating high-frequency wave packets at the **semi-classical** time scale ($s = t/h$) $O(1)$.
- When $\mathbf{A} \equiv 0$, $(\text{Obs})_{T,\omega}$ for any $T > 0$ and any non-empty open set $\omega \subset \mathbb{T}^d$:
 - ▶ Jaffard '90 (Fourier series approach) : $d = 2, V \equiv 0$.
 - ▶ Burq-Zworski '12, '19, Bourgain-Burq-Zworski '14 (semiclassical analysis+dispersive tools):
 $d = 2, V \in L^2, \omega$ open; and $d = 2, V \equiv 0, \omega$ measurable and $|\omega| > 0$.
 - ▶ Anantharaman-Macià '14 (2nd semiclassical measures) :
 $d \geq 2, V \in C^0, \omega$ open.
 - ▶ Burq-Zhu ('25) (dispersive tools) : any d , rough space-time observation region and rough V .

The case $\mathbf{A} \neq 0$? Some notations

The first order perturbation will influence the long-time semiclassical Schrödinger dynamics (Wunsch '12, Rivière-Macià '18). In our context of observability, new geometric conditions appear.

We need some notions :

- For any $f \in L^1(\mathbb{T}^2; \mathbb{R}^m)$, $\vec{e} \in \mathbb{R}^2$, $|\vec{e}| = 1$,

$$\langle f \rangle_{\vec{e}}(z) := \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^T f(z + t\vec{e}) dt.$$

On \mathbb{T}^2 , we distinguish \vec{e} as

- ▶ Periodic : If \vec{e} generates a closed geodesic, i.e.
 $\vec{e} = \frac{(p, q)}{\sqrt{p^2 + q^2}}$, $\text{gcd}(p, q) = 1$, a rational direction
- ▶ Ergodic : If not, i.e. \vec{e} is an irrational direction, generating a dense orbit.

In particular, if \vec{e} ergodic,

$$\langle f \rangle_{\vec{e}} = \mathop{\int}_{\mathbb{T}^2} f,$$

while if \vec{e} periodic,

$$\langle f \rangle_{\vec{e}}(z) = \mathop{\int}_{\gamma_{\vec{e}}} f,$$

where $\gamma_{\vec{e}}$ is the closed geodesic generated by \vec{e} .

Condition (MGCC) and main results

Let ω be an open set of \mathbb{T}^2 , γ the closed geodesic generated by the periodic $\vec{\gamma}$. Denote $\omega_{\vec{\gamma}^\perp}$ the projection of ω on the direction of $\vec{\gamma}^\perp$.

Definition (MGCC)

We say that ω satisfies the magnetic geometric control condition (MGCC), if for any periodic direction $\vec{\gamma}$, $\omega_{\vec{\gamma}^\perp}$ contains all the zeros of $\langle B \rangle_{\vec{\gamma}}$.

- ▶ Since $B = \nabla \wedge \mathbf{A}$, the (MGCC) is equivalent to: for any periodic $\vec{\gamma}$, $\omega_{\vec{\gamma}^\perp}$ contains all the critical points of the function $A_\gamma := \langle \mathbf{A} \rangle_{\vec{\gamma}} \cdot \vec{\gamma}^\perp$.

Condition (MGCC) and main results

Let ω be an open set of \mathbb{T}^2 , γ the closed geodesic generated by the periodic $\vec{\gamma}$. Denote $\omega_{\vec{\gamma}^\perp}$ the projection of ω on the direction of $\vec{\gamma}^\perp$.

Definition (MGCC)

We say that ω satisfies the magnetic geometric control condition (MGCC), if for any periodic direction $\vec{\gamma}$, $\omega_{\vec{\gamma}^\perp}$ contains all the zeros of $\langle B \rangle_{\vec{\gamma}}$.

- ▶ Since $B = \nabla \wedge \mathbf{A}$, the (MGCC) is equivalent to: for any periodic $\vec{\gamma}$, $\omega_{\vec{\gamma}^\perp}$ contains all the critical points of the function $A_\gamma := \langle \mathbf{A} \rangle_{\vec{\gamma}} \cdot \vec{\gamma}^\perp$.

Theorem (Le Balc'h-N.-Sun '25)

Let ω be an open subset of \mathbb{T}^2 .

- ▶ If ω satisfies (MGCC), then $(\text{Obs})_{T,\omega}$ holds for any $T > 0$.
- ▶ If for some periodic $\vec{\gamma}$, $\langle B \rangle_{\vec{\gamma}}$ has a non-degenerate zero outside $\overline{\omega}_{\vec{\gamma}^\perp}$, then $(\text{Obs})_{T,\omega}$ cannot hold for any $T > 0$.

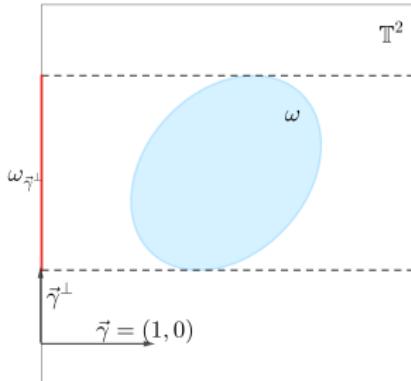
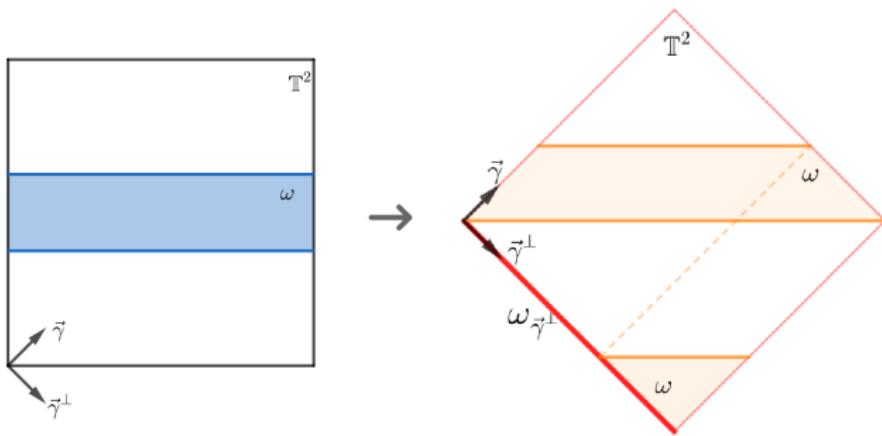


Figure: Control region projection



Main results, sequel

Theorem (Le Balc'h-N.-Sun)

Under (MGCC), we have proved the following resolvent estimate :

$$\|u\|_{L^2(\mathbb{T}^2)} \leq \frac{C}{1 + |\lambda|^{1/4}} \|(H_{\mathbf{A}, V} + \lambda)u\|_{L^2(\mathbb{T}^2)} + \|u_\lambda\|_{L^2(\omega)}, \forall \lambda \in \mathbb{R}.$$

Corollary

Under (MGCC), internal exact controllability holds.

Main results, sequel

Theorem (Le Balc'h-N.-Sun)

Under (MGCC), we have proved the following resolvent estimate :

$$\|u\|_{L^2(\mathbb{T}^2)} \leq \frac{C}{1 + |\lambda|^{1/4}} \|(H_{\mathbf{A}, V} + \lambda)u\|_{L^2(\mathbb{T}^2)} + \|u_\lambda\|_{L^2(\omega)}, \forall \lambda \in \mathbb{R}.$$

Corollary

Under (MGCC), internal exact controllability holds.

- (MGCC) is sufficient, but not necessary with following missing cases :
 - ▶ $B \equiv 0$: There exists a gauge χ such that $\mathbf{A}_\chi := \mathbf{A} + \nabla g = \text{const.}$. Following the work Le Balc'h-Martin '23, the observability of (1) holds for any $T > 0$ and any non-empty open set $\omega \subset \mathbb{T}^2$.
 - ▶ $B \neq 0$ and there are finite order of zeros of $\langle B \rangle_\gamma$ on $\partial\omega_{\vec{\gamma}^\perp}$?
 - ▶ $\langle B \rangle_\gamma$ has infinite order of zeros ?

A closely related work

- [Morin-Rivière'24](#) prove the Quantum Unique Ergodicity for the magnetic Laplacian on \mathbb{T}^2 under the condition $\langle B \rangle_\gamma > 0$ everywhere, for all $\vec{\gamma}$. In their setup, B [cannot](#) be derived from a magnetic potential \mathbf{A} . $\hat{B}_0 = \int_{\mathbb{T}^2} B$ is the total flux satisfying the quantization condition $\hat{B}_0 \in 2\pi\mathbb{Z}$. Their argument leads to the same resolvent estimate as ours in the non-zero flux case $\hat{B}_0 \neq 0$.
- In the non-zero flux case $\hat{B}_0 \neq 0$, Morin-Rivière used magnetic Weyl-quantization and the second semiclassical measure approach in the spirit of [Anatharaman-Macià](#).
- In the zero flux case $\hat{B}_0 = 0$, the standard Weyl-quantization is sufficient. Our argument is based on the normal form approach in the spirit of [Burq-Zworski](#).

Part II : Sketch of the Proof

A model example

Consider the model case $\mathbf{A} = (A_1(y), A_2 = 0)$, $V = -|A_1|^2$. Then the magnetic Schrödinger equation writes

$$i\partial_t u + \Delta u - 2iA_1(y)\partial_x u = 0.$$

Taking the Fourier transform in x :

$$i\partial_t u_k + (\partial_y^2 - k^2)u_k + 2A_1(y)ku_k = 0.$$

Around a non-degenerate critical point y_0 of A_1 with $A'_1(y_0) = 0$, $A''_1(y_0) = -\omega_0^2 < 0$,

$$A_1(y) \approx A_1(y_0) - \omega_0^2 \frac{(y - y_0)^2}{2}.$$

Consider $u_k \mapsto v_k := u_k e^{-it(k^2 - A_1(y_0))k}$, then

$$i\partial_t v_k + \partial_y^2 v_k - k\omega_0^2(y - y_0)^2 v_k = 0.$$

A model example, sequel

For $k \gg 1$, take

$$v_k(0) = c_k e^{-\frac{\sqrt{k}\omega_0(y-y_0)^2}{2}}$$

to be the ground state of the harmonic oscillator $-\partial_y^2 + k\omega_0^2(y - y_0)^2$.

Then

$$v_k(t, y) = c(k) e^{-\frac{\sqrt{k}\omega_0(y-y_0)^2}{2} - itk}$$

which concentrates around $y = y_0$ for all $t \in \mathbb{R}$. So we cannot have observability **if a horizontal observation region ω does not contain the line $y = y_0$.**

Proof under (MGCC) I: High-energy observability

By the standard compactness-uniqueness argument of Lebeau and the unique continuation property w.r.t. $H_{\mathbf{A},V}$, it suffices to prove the high-energy observability. More precisely, Denote

$$\Pi_{h,\rho} u := \chi \left(\frac{h^2 H_{\mathbf{A},V} - 1}{\rho} \right) u, \quad u \in L^2(\mathbb{T}^2).$$

We need to prove for any $T > 0$, and sufficiently small $0 < h, \rho \ll 1$,

$$\|\Pi_{h,\rho} u_0\|_{L^2(\mathbb{T}^2)}^2 \leq C \int_0^T \int_{\omega} |e^{-itH_{\mathbf{A},V}} \Pi_{h,\rho} u_0(z)|^2 dz dt \quad \forall u_0 \in L^2(\mathbb{T}^2).$$

Proof under (MGCC) I: High-energy observability

By the standard compactness-uniqueness argument of Lebeau and the unique continuation property w.r.t. $H_{\mathbf{A},V}$, it suffices to prove the high-energy observability. More precisely, Denote

$$\Pi_{h,\rho} u := \chi \left(\frac{h^2 H_{\mathbf{A},V} - 1}{\rho} \right) u, \quad u \in L^2(\mathbb{T}^2).$$

We need to prove for any $T > 0$, and sufficiently small $0 < h, \rho \ll 1$,

$$\|\Pi_{h,\rho} u_0\|_{L^2(\mathbb{T}^2)}^2 \leq C \int_0^T \int_{\omega} |e^{-itH_{\mathbf{A},V}} \Pi_{h,\rho} u_0(z)|^2 dz dt \quad \forall u_0 \in L^2(\mathbb{T}^2).$$

Under (MGCC), we will indeed prove a stronger high-energy observability result in **much shorter time**, equivalent to our resolvent estimate :

Proposition

*There exists a **numerical constant** $T_0 > 0$ such that for any $T \geq T_0$, there exist constants $\rho_0 > 0$, $h_0 > 0$ and $C > 0$ such that for any $\rho \in (0, \rho_0)$, $h \in (0, h_0)$, we have $(\text{Obs})_{h,T,\omega}$:*

$$\|\Pi_{h,\rho} u_0\|_{L^2(\mathbb{T}^2)}^2 \leq C \int_0^T \int_{\omega} \left| e^{-it\textcolor{blue}{h}^{\frac{1}{2}} H_{\mathbf{A},V}} \Pi_{h,\rho} u_0(z) \right|^2 dz dt \quad \forall u_0 \in L^2(\mathbb{T}^2). \quad (4)$$

Proof under (MGCC) II: Semiclassical measures

Though a quantitative argument is possible, we argue by contradiction for clarity. If $(\text{Obs})_{h,T,\omega}$ is untrue, there is a sequence $(u_h)_{0 < h \ll 1}$ such that

$$\|u_h\|_{L^2(\mathbb{T}^2)} = 1, \quad \int_0^T \|e^{-ith^{\frac{1}{2}}H_{\mathbf{A},\nu}} u_h\|_{L^2(\omega)}^2 dt = o(1), \quad h \rightarrow 0^+.$$

Up to extracting a subsequence, there exists a semiclassical defect measure μ on $\mathbb{R}_t \times T^*\mathbb{T}_z^2$ such that for any function $\psi \in C_0^0(\mathbb{R}_t)$ and any $a \in C_c^\infty(T^*\mathbb{T}_z^2)$, we have

$$\langle \mu, \psi(t)a(z, \zeta) \rangle = \lim_{n \rightarrow +\infty} \int_{\mathbb{R}_t \times \mathbb{T}_z^2} \psi(t)(\text{Op}_h^w(a)u_h)(t, z) \overline{u_h(t, z)} dz dt.$$

- ▶ The measure μ is supported in $S^*\mathbb{T}^2$, i.e.

$$\text{supp}(\mu) \subset \{(t, z, \zeta) \in \mathbb{R}_t \times T^*\mathbb{T}^2 : |\zeta| = 1\},$$

- ▶ For any $t_0 < t_1$, we have

$$\mu((t_0, t_1) \times T^*\mathbb{T}^2) = t_1 - t_0, \quad \mu|_{(0, T_0) \times \omega \times \mathbb{S}^1} = 0.$$

- ▶ For a.e. $t \in \mathbb{R}$,

$$\zeta \cdot \nabla_z \mu(t, \cdot) = 0.$$

Proof under (MGCC) II: Semiclassical measures

Though a quantitative argument is possible, we argue by contradiction for clarity. If $(\text{Obs})_{h,T,\omega}$ is untrue, there is a sequence $(u_h)_{0 < h \ll 1}$ such that

$$\|u_h\|_{L^2(\mathbb{T}^2)} = 1, \quad \int_0^T \|e^{-ith^{\frac{1}{2}}H_{\mathbf{A},\nu}} u_h\|_{L^2(\omega)}^2 dt = o(1), \quad h \rightarrow 0^+.$$

Up to extracting a subsequence, there exists a semiclassical defect measure μ on $\mathbb{R}_t \times T^*\mathbb{T}_z^2$ such that for any function $\psi \in C_0^0(\mathbb{R}_t)$ and any $a \in C_c^\infty(T^*\mathbb{T}_z^2)$, we have

$$\langle \mu, \psi(t)a(z, \zeta) \rangle = \lim_{n \rightarrow +\infty} \int_{\mathbb{R}_t \times \mathbb{T}_z^2} \psi(t)(\text{Op}_h^w(a)u_h)(t, z) \overline{u_h(t, z)} dz dt.$$

- ▶ Thanks to the invariant property and the fact that ω is open, we have

$$\mu = \sum_{\zeta_0: \text{ periodic}} \mu|_{\mathbb{R} \times \mathbb{T}^2 \times \{\zeta_0\}},$$

with only **finitely-many** periodic directions ζ_0 . We only need to show that $\mu|_{\mathbb{R} \times \mathbb{T}^2 \times \{\zeta_0\}} = 0$ for any periodic ζ_0 .

- ▶ Up to changing coordinate, we may assume for $\zeta_0 = (1, 0)$

2nd semiclassical scale and 1d reduction

- Gauge : $\mathbf{A} = (A_1(y), A_2(x, y))$. Our equation becomes

$$ih^{3/2}\partial_t u_h - P_h u_h = 0,$$

where

$$P_h = p_0^w(hD) + hp_1^w(z, hD) + h^2 p_2^w(z, hD)$$

with symbols

$$p_0 = |\zeta|^2 = \xi^2 + \eta^2,$$

$$p_1 = 2A_1(y)\xi + 2A_2(x, y)\eta,$$

$$p_2 = V + A_1^2 + A_2^2$$

- Need to perform a second microlocalization near the coisotropic subspace $\{\eta = 0\}$. This could be realized simply by normal-form reduction + positive commutator method. It turns out that the second-semiclassical scale can be chosen as $|\eta| \sim h^{\frac{1}{4}} +$

Normal form reduction

We search for $Q_h = \text{Op}_h^w(q(x, y, \xi)\eta)$ to average the potential $A_2(x, y)$ through conjugation :

$$e^{Q_h} P_h e^{-Q_h} = P_h + [Q_h, P_h] + \mathcal{O}(h^2)$$

$$\begin{aligned} &= \underbrace{\text{Op}_h^w(p_0 + 2hA_1(y)\xi)}_{\text{principal}} + \underbrace{\text{Op}_h^w(2hA_2(x, y)\eta + \frac{h}{i}\{q\eta, \xi^2 + \eta^2\})}_{\text{principal}} + \mathcal{O}(h^2) \\ &= \underbrace{\text{Op}_h^w(p_0 + 2hA_1(y)\xi)}_{\text{principal}} + \underbrace{\text{Op}_h^w(2h(A_2(x, y) + i\xi\partial_x q)\eta)}_{\text{principal}} \\ &\quad + \underbrace{2ih\text{Op}_h^w((\partial_y q)\eta^2) + \mathcal{O}(h^2)}_{\text{remainder} = o(h^{3/2})}. \end{aligned}$$

- To average A_2 , we choose q by solving

$$\partial_x q(x, y, \xi) = -\frac{1}{i\xi}(A_2 - \langle A_2 \rangle_{(1,0)}(y)).$$

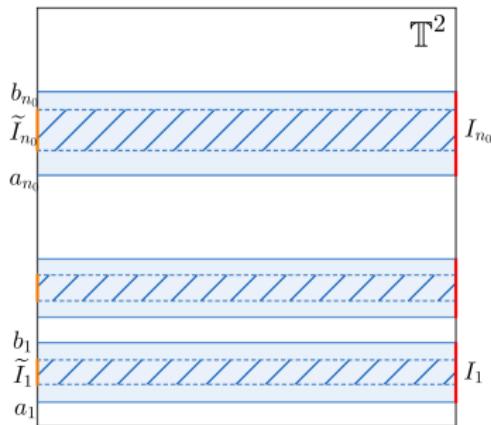
- The operator $2ih\text{Op}_h^w(\partial_y q\eta^2)$ can be viewed as remainder only if $\eta = o(h^{1/4})$, this explains the choice of the second semiclassical scale. For wave packets oscillating at scale $\eta \gtrsim h^{1/4}$, we detect it transversal propagation via the multiplier $\varphi(y)y\partial_y$.

Key 1d analysis

We now prove the “1d” observability of the equation

$$ih^{3/2}\partial_t u_h + h^2\Delta_{x,y} u_h + 2ihA_1(y)h\partial_x u_h + 2ihA_2(y)h\partial_y u_h = o_{L^2_{t,x,y}}(h^{\frac{3}{2}})$$

on finite union of blue horizontal strips containing all critical points of A_1 in the interior :



$$\omega_y = \bigcup_{j=1}^{n_0} I_j : \text{ ---}$$

$$\tilde{\omega}_y = \bigcup_{j=1}^{n_0} \tilde{I}_j : \text{ ---}$$

$$\omega = \mathbb{T}_x \times \omega_y$$

Figure: Multiple strips

Key 1d analysis

- On a gap (b_j, a_{j+1}) of white strips, $A'_1(y) \geq c_0 > 0$ (or uniformly negative). We use the localized multiplier $\theta(\frac{t}{T})\chi(y)(y - b_j + \epsilon_0)\partial_y$. Thinking $h\partial_x = 1$, then the positive commutator comes from

$$\begin{aligned}
 & -[ih^{\frac{3}{2}}\partial_t + h^2\partial_y^2 + 2hA_1(y), \chi(y)(y - b_j + \epsilon_0)\partial_y] \\
 & = \underbrace{-2\chi(y)h^2\partial_y^2 + 2h\chi(y)A'_1(y)(y - b_j + \epsilon_0)}_{\text{positive operators}} + \underbrace{\text{l.o.t.}}_{\text{higher power in } h + \text{terms with } \partial_x} \quad .
 \end{aligned}$$

- The positive commutator will essentially control

$$\begin{aligned}
 & \|h\partial_y u_h\|_{L^2_{x,y}}^2 + \underbrace{\|h^{1/2}u_h\|_{L^2_{x,y}}^2}_{\text{principal thanks to (MGCC)}}
 \end{aligned}$$

- On the other hand, the commutator involving $[ih^{3/2}\partial_t, \theta(t/T) \cdots h^{-1}h\partial_y]$ will finally contribute a main term in the remainder

$$\frac{O(h^{1/2})}{T} \|u_h\|_{L^2} \|h\partial_y u_h\|_{L^2},$$

hence we need $T \geq T_0 \gg 1$ (but independent of h).

Part III: Comments & Perspectives

About the optimality

Assume for some periodic $\vec{\gamma}$, $\langle B \rangle_\gamma$ has a zero outside $\overline{\omega}_{\vec{\gamma}^\perp}$.

To disprove $(\text{Obs})_{T,\omega}$:

- ▶ By changing coordinate, translation and gauge transform, we may assume that $\overline{\omega}_{\vec{\gamma}^\perp}$ are horizontal strips and $\mathbf{A} = (A_1(y), A_2(x, y))$ such that a critical point $y_0 = 0$ of $A_1(y)$ is outside $\overline{\omega}_{\vec{\gamma}^\perp}$ and $A_1''(0) \neq 0$.
- ▶ Well-prepared modes : Preparing the highly-concentrated sequences as in the model example (there $A_2 = \langle A_2 \rangle_{(1,0)}(y)$).
- ▶ Since the normal form transform is invertible, we do the inverse normal form transform (de-average A_2) as in the previous proof to transfer the well-prepared modes in the model example to get the desired modes.
- ▶ **Additional point** : To disprove the observability $(\text{Obs})_{T,\omega}$, only $o_{L^2}(h^2)$ terms can be viewed as remainders (comparing to $o_{L^2}(h^{3/2})$). We need to do one step further normal form to average symbols that are $O_{L^2}(h^2)$ in a priori.

Perspectives

- ▶ Our result could be generalized to the case with non-zero flux $\widehat{B}_0 \neq 0$ on \mathbb{T}^2 , under (MGCC).
- ▶ In terms observability, $H_{\mathbf{A}, V}$ is clearly not a perturbation of $-\Delta$, comparing to $-\Delta + V$. It is challenging to study the question of rough potential or rough control, as in the context of $-\Delta + V$. It is possible to relax the regularity of the electronic potential V .
- ▶ The case $d \geq 3$? Description of the semiclassical measures for the magnetic Schrödinger equations ? Delocalization ? Concentration ?

Thank you for your attention !