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Part | : Problem & Results



Electromagnetic Schrodinger equation

e The model :

iOpu = Havu inR; x T2, (1)
u(0,) = up in T2,

® Ha v : The electromagnetic Schrodinger operator given by

Ha,v(z) := <TV - A(z)) + V(2), z=(xy)eT? (2

V e C2(T?,R), A = (AL, Ay) € C(T? R?). (3)

o Zero-flux magnetic field : B := V A A = 0,A> — 0,A;, so that

f.B=0.
e Gauge-invariance : A — A, := A+ V for any x € C>=(T?),

e—:tHAX,V _ e'Xe_'tHA*Ve_'X.

e Main question : Observability for the Schrodinger propagator e~ /tHa.v

on L2(T?).



Brief review of literature for the Schrodinger observability

on T¢
(Obs)7,, : For T > 0,w open. 3Ct A >0, s.t. for any up € L2,

;
lol% < Croua / e~ 0 ug 2, it

e Lebeau '92 : Geometric control condition (GCC) is sufficient : (GCC)
allows to observe h-oscillating high-frequency wave packets at the
semi-classical time scale (s = t/h) O(1).

o When A =0, (Obs)r,, for any T > 0 and any non-empty open set
wC T :
» Jaffard '90 (Fourier series approach) :d =2,V = 0.
» Burg-Zworski '12, '19, Bourgain-Burg-Zworski '14 (semiclassical
analysis+dispersive tools):
d=2,V €2 wopen; and d =2,V = 0,w measurable and |w| > 0.
» Anatharaman-Macia '14 (2nd semiclassical measures) :
d>2V e C°uw open.
» Burg-Zhu ('25) (dispersive tools) : any d, rough space-time
observation region and rough V.



The case A # 07 Some notations
The first order perturbation will influence the long-time semiclassical
Schrédinger dynamics (Wunsch '12, Riviere-Macia '18). In our context of
observability, new geometric conditions appear.

We need some notions :
e Forany f € L}(T?%;,R™), &€ R?, |e] =1,
-
(Fe(z) == lim l/ F(z + t&)dt.
0

T—ooo T

On T2, we distinguish & as
» Periodic : If € generates a closed geodesic, i.e.
52— _(p.a) — ; irecti
= —=L_ gcd(p,q) = 1, a rational direction
g 8cd(p.q)
» Ergodic : If not, i.e. €is an irrational direction, generating a dense
orbit.
In particular, if € ergodic,
(Fle=1 f,
T2
while if € periodic,

(F)o(z) = ][ f.

where vz is the closed geodesic generated by €.



Condition (MGCC) and main results

Let w be an open set of T2, 7 the closed geodesic generated by the
periodic 7. Denote wy 1 the projection of w on the direction of .

Definition (MGCC)

We say that w satisfies the magnetic geometric control condition
(MGCC), if for any periodic direction 7, ws. contains all the zeros of

(B)5.
» Since B=V A A, the (MGCC) is equivalent to: for any periodic 7,

ws. contains all the critical points of the function A, := (A)5 - 7*.



Condition (MGCC) and main results

Let w be an open set of T2, 7 the closed geodesic generated by the
periodic 7. Denote wy 1 the projection of w on the direction of .
Definition (MGCC)

We say that w satisfies the magnetic geometric control condition
(MGCC), if for any periodic direction 7, ws. contains all the zeros of
(B)5.

» Since B=V A A, the (MGCC) is equivalent to: for any periodic 7,

ws. contains all the critical points of the function A, := (A)5 - 7*.

Theorem (Le Balc'h-N.-Sun '25)
Let w be an open subset of T2.
» If w satisfies (MGCC), then (Obs)t ., holds for any T > 0.

» If for some periodic 7, (B)y has a non-degenerate zero outside wWs.,
then (Obs)t ., cannot hold for any T > 0.



Figure: Control region projection
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Main results, sequel

Theorem (Le Balc’h-N.-Sun )
Under (MGCC), we have proved the following resolvent estimate :

||u||L2(’I[‘2) ||(HA’\/ + )\)UH/_z(Tz) + ||u,\||L2(w)7V>\ € R.

< C
=T e

Corollary
Under (MGCC), internal exact controllability holds.
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Corollary
Under (MGCC), internal exact controllability holds.

e (MGCQC) is sufficient, but not necessary with following missing cases :

» B = 0: There exists a gauge x such that A, := A + Vg = const.
Following the work Le Balc'h-Martin '23, the observability of (1)
holds for any T > 0 and any non-empty open set w C T2.

» B # 0 and there are finite order of zeros of (B), on Jws. ?
» (B). has infinite order of zeros ?



A closely related work

e Morin-Riviére'24 prove the Quantum Unique Ergodicity for the
magnetic Laplacian on T? under the condition (B). > 0 everywhere, for
all 4. In their setup, B cannot be derived from a magnetic potential A.
By = sz B is the total flux satisfying the quantization condition

By € 2nZ. Their arugment leads to the same resolvent estimate as ours
in the non-zero flux case By # 0.

e In the non-zero flux case §0 # 0, Morin-Riviere used magnetic
Weyl-quantization and the second semiclassical measure approach in the
spirit of Anatharaman-Macia.

e In the zero flux case éo = 0, the standard Weyl-quantization is
sufficient. Our argument is based on the normal form approach in the
spirit of Burg-Zworski.



Part |l : Sketch of the Proof



A model example

Consider the model case A = (A;(y), A>» = 0), V = —|A;|?. Then the
magnetic Schrodinger equation writes

i0ru+ Au — 2iA1(y)0xu = 0.
Taking the Fourier transform in x :
iOpuy + (85 — k?)uy + 2A1(y) kuy = 0.

Around a non-degenerate critical point yp of A; with
A1(v0) = 0, A (vo) = —w§ <0,

M)~ Ao~ O

. : 2
Consider uy = vy := uetK=A1n0)k) then

iOpvik + 8§vk — kwg(y — yo)ka =0.



A model example, sequel

For k > 1, take

_ Vkwo(y—x)?

vk(0) = cke 2

; : 2 2 2
to be the ground state of the harmonic oscillator —3; + kwg(y — y0)*.
Then . ,

kwoly—y0)% -
vi(t,y) = c(k)em

which concentrates around y = yq for all t € R. So we cannot have
observability if a horizontal observation region w does not contain the

line y = yp.



Proof under (MGCC) I: High-energy observability

By the standard compactness-uniqueness argument of Lebeau and the
unique continuation property w.r.t. Ha v, it suffices to prove the
high-energy observability. More precisely, Denote

W2 Hay — 1
Mhpt ==X <AV> u,  uel?(T?).
p

We need to prove for any T > 0, and sufficiently small 0 < h, p < 1,

T
Hl'lh7pu0||%2(Tz) < C/o / ‘e_’tH“"’I_Ih,puo(z)|2 dzdt  Vuy € L3(T?).
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We need to prove for any T > 0, and sufficiently small 0 < h, p < 1,

T
thonH%z(Tz) < C/o / ‘e_’tH“"’I_Ih,puo(z)’2 dzdt  Vuy € L3(T?).

Under (MGCC), we will indeed prove a stronger high-energy observability
result in much shorter time, equivalent to our resolvent estimate :
Proposition

There exists a numerical constant To > 0 such that for any T > Ty,

there exist constants pg > 0, hg > 0 and C > 0 such that for any
p €(0,p0), h € (0, hy), we have (Obs)h. 7., :

;
1M, tto]| 7272y < C/ /
0 w

2
1
o—ith? HA-er—]h’pUO(Z) dzdt Yup € L2(T2).

(4)




Proof under (MGCC) Il: Semiclassical measures

Though a quantitative argument is possible, we argue by contradiction for
clarity. If (Obs)a, 1. is untrue, there is a sequence (up)o<h<1 such that

T L, 1
lunll 22y = 1, /0 le™ Y o,y dt = o(1), h — 0.

Up to extracting a subsequence, there exists a semiclassical defect
measure i on R; x T*T?2 such that for any function ¢ € CJ(R;) and any
a € C>®(T*T?), we have

(. 9(t)a(z,¢)) = lim /R TZ11)(t)(010hw(3)Uh)(tZ)Uh(f-“,Z)dZG’f~

n—-+o0o

» The measure u is supported in S*T?, i.e.
supp(p) C {(t,2,¢) € Ry x T*T?: [¢[ =1},
» For any ty < t1, we have
1((to, 1) x T*T?) = t1 — to,  pl(0,75)xwxsr = O.

» Fora.e. teR,
¢-V,u(t,-)=0.
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Though a quantitative argument is possible, we argue by contradiction for
clarity. If (Obs)a, 1. is untrue, there is a sequence (up)o<h<1 such that

T L, 1
lunll 22y = 1, /0 le™ Y o,y dt = o(1), h — 0.

Up to extracting a subsequence, there exists a semiclassical defect
measure i on R; x T*T?2 such that for any function ¢ € CJ(R;) and any
a € C>®(T*T?), we have
(1 y(t)a(z,¢)) = lim / _W(£)(Oph (a)un)(t, 2)un(t, z)dzdt.
Ry xT2

n—-+o0o

» Thanks to the invariant property and the fact that w is open, we
have

M= Z IR x T2 {0}

Co: periodic
with only finitely-many periodic directions (5. We only need to show
that p|pyxm2x (¢} = 0 for any periodic (o.
> Up to changing coordinate, we may assume for {; = (1,0)



2nd semiclassical scale and 1d reduction

e Gauge : A = (A1(y), A2(x,y)). Our equation becomes
ih3/28tuh - Phuh = 0,
where
Py = pg (hD) + hp’(z, hD) + h*p3'(z, hD)

with symbols

po=[CI> = & +n?,

p1 = 2A1(y)§ + 2A2(x, y)n,

pr =V + A? + A3

e Need to perform a second microlocalization near the coisotropic
subspace {n = 0}. This could be realized simply by normal-form
reduction + positive commutator method. It turns out that the
second-semiclassical scale can be chosen as || ~ hit



Normal form reduction

We search for Q, = Opy/(g(x,y,£)n) to average the potential Ax(x,y)
through conjugation :

e Pue™ % =Py, + [Qn, Pu] + O(K)
h
=0pj (po +2hA(y)€) + Op} (2hA2(x, y)n + ={qn,&* +1°}) + O(h°)
=Opy (po + 2hA1(y)€) +Opy (2h(Aa(x, y) + i£xq)n)

principal

+ 2ihOp; ((8yq)n*) + O(h).

remainder:o(h3/2)

e To average A, we choose g by solving

Deq(x, y.€) = —%(Az — (A uo)():

e The operator 2ihOp! (8, qn?) can be viewed as remainder only if n = o(h/*),
this explains the choice of the second semiclassical scale. For wave packets
oscillating at scale n 2 h'/*, we detect it transversal propagation via the

multiplier ¢(y)yd,.



Key 1d analysis

We now prove the “1d” observability of the equation

Nlw

i 20up + WAy up + 2ihAL(y)hd, up + 2ihAy(y)hdy up = oz, (h?)

on finite union of blue horizonal strips containing all critical points of A;
in the interior :

TZ
by,
I, I,
Qg no
wy = U Ii: —
j=1
o

by wy=UI
2 et}
I I ’
ay w="Ty X wy

Figure: Multiple strips



Key 1d analysis

e On a gap (bj, aj4+1) of white strips, Aj(y) > co > 0 (or uniformly
negative). We use the localized multiplier 8(<)x(y)(y — bj + €0)9,.
Thinking hd, = 1, then the positive commutator comes from

—[ih? 0, + h202 + 2hA(y), x(y)(y — b; + €0)dy]

= —2x(¥)h*8; + 2hx () A (¥)(y — bj + €) + Lot

higher power in h + terms with Ox

positive operators

e The positive commutator will essentially control

Ihdyunle + 82wl
—_———
principal thanks to (MGCC)

e On the other hand, the commutator involving
[ih*/20,,0(t/T)---h~*hd,] will finally contribute a main term in the
remainder

lo) h1/2 )
O a1,

hence we need T > Ty > 1 (but independent of h).



Part Ill: Comments &
Perspectives



About the optimality

Assume for some periodic 7, (B), has a zero outside wWs. .
To disprove (Obs) T, :

» By changing coordinate, translation and gauge transform, we may
assume that W~ are horizontal strips and A = (A1(y), A2(x, y))
such that a critical point yo = 0 of A;(y) is outside @5, and
A7(0) # 0.

» Well-prepared modes : Preparing the highly-concentrated sequences
as in the model example (there Ay = (A2)(1,0)(y))-

» Since the normal form transform is invertible, we do the inverse
normal form transform (de-average A;) as in the previous proof to
transfer the well-prepared modes in the model example to get the
desired modes.

> Additional point : To disprove the observability (Obs)t ., only
0;2(h?) terms can be viewed as remainders (comparing to o,2(h*/?)).
We need to do one step further normal form to average symbols that
are Oy2(h?) in a priori.



Perspectives

» OQur result could be generalized to the case with non-zero flux
By # 0 on T2, under (MGCC).

» In terms observability, Ha v is clearly not a perturbation of —A,
comparing to —A + V. It is challenging to study the question of
rough potential or rough control, as in the context of —A+ V. ltis
possible to relax the regularity of the electronic potential V.

» The case d > 3 7 Description of the semiclassical measures for the
magnetic Schrodinger equations 7 Delocalization ? Concentration ?



Thank you for your attention |
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