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Part I : Problem & Results



Electromagnetic Schrödinger equation

• The model : {
i∂tu = HA,V u in Rt × T2,
u(0, ·) = u0 in T2,

(1)

• HA,V : The electromagnetic Schrödinger operator given by

HA,V (z) :=

(
1

i
∇− A(z)

)2

+ V (z), z = (x , y) ∈ T2, (2)

V ∈ C∞(T2,R), A = (A1,A2) ∈ C∞(T2,R2). (3)

• Zero-flux magnetic field : B := ∇∧ A = ∂xA2 − ∂yA1, so thatffl
T2 B = 0.
• Gauge-invariance : A 7→ Aχ := A+∇χ for any χ ∈ C∞(T2),

e−itHAχ,V = e iχe−itHA,Ve−iχ.

• Main question : Observability for the Schrödinger propagator e−itHA,V

on L2(T2).



Brief review of literature for the Schrödinger observability
on Td

(Obs)T ,ω : For T > 0, ω open. ∃CT ,ω,A > 0, s.t. for any u0 ∈ L2,

∥u0∥2L2 ≤ CT ,ω,A

ˆ T

0

∥e−itHA,V u0∥2L2(ω)dt

• Lebeau ’92 : Geometric control condition (GCC) is sufficient : (GCC)
allows to observe h-oscillating high-frequency wave packets at the
semi-classical time scale (s = t/h) O(1).

• When A ≡ 0, (Obs)T ,ω for any T > 0 and any non-empty open set
ω ⊂ Td :

▶ Jaffard ’90 (Fourier series approach) :d = 2,V ≡ 0.

▶ Burq-Zworski ’12, ’19, Bourgain-Burq-Zworski ’14 (semiclassical
analysis+dispersive tools):
d = 2,V ∈ L2, ω open; and d = 2,V ≡ 0, ω measurable and |ω| > 0.

▶ Anatharaman-Macià ’14 (2nd semiclassical measures) :
d ≥ 2,V ∈ C 0, ω open.

▶ Burq-Zhu (’25) (dispersive tools) : any d , rough space-time
observation region and rough V .



The case A ̸= 0? Some notations
The first order perturbation will influence the long-time semiclassical
Schrödinger dynamics (Wunsch ’12, Rivière-Macià ’18). In our context of
observability, new geometric conditions appear.

We need some notions :
• For any f ∈ L1(T2;Rm), e⃗ ∈ R2, |e⃗| = 1,

⟨f ⟩e⃗(z) := lim
T→∞

1

T

ˆ T

0

f (z + te⃗)dt.

On T2, we distinguish e⃗ as
▶ Periodic : If e⃗ generates a closed geodesic, i.e.

e⃗ = (p,q)√
p2+q2

, gcd(p, q) = 1, a rational direction

▶ Ergodic : If not, i.e. e⃗ is an irrational direction, generating a dense
orbit.

In particular, if e⃗ ergodic,

⟨f ⟩e⃗ =
 
T2

f ,

while if e⃗ periodic,

⟨f ⟩e⃗(z) =
 
γe⃗

f ,

where γe⃗ is the closed geodesic generated by e⃗.



Condition (MGCC) and main results

Let ω be an open set of T2, γ the closed geodesic generated by the
periodic γ⃗. Denote ωγ⃗⊥ the projection of ω on the direction of γ⃗⊥.

Definition (MGCC)
We say that ω satisfies the magnetic geometric control condition
(MGCC), if for any periodic direction γ⃗, ωγ⃗⊥ contains all the zeros of
⟨B⟩γ⃗ .
▶ Since B = ∇∧ A, the (MGCC) is equivalent to: for any periodic γ⃗,
ωγ⃗⊥ contains all the critical points of the function Aγ := ⟨A⟩γ⃗ · γ⃗⊥.

Theorem (Le Balc’h-N.-Sun ’25)
Let ω be an open subset of T2.

▶ If ω satisfies (MGCC), then (Obs)T ,ω holds for any T > 0.

▶ If for some periodic γ⃗, ⟨B⟩γ⃗ has a non-degenerate zero outside ωγ⃗⊥ ,
then (Obs)T ,ω cannot hold for any T > 0.
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Figure: Control region projection

Figure: Control region projection for γ2 ̸= 0



Main results, sequel

Theorem (Le Balc’h-N.-Sun )
Under (MGCC), we have proved the following resolvent estimate :

∥u∥L2(T2) ≤
C

1 + |λ|1/4
∥(HA,V + λ)u∥L2(T2) + ∥uλ∥L2(ω),∀λ ∈ R.

Corollary
Under (MGCC), internal exact controllability holds.

• (MGCC) is sufficient, but not necessary with following missing cases :

▶ B ≡ 0: There exists a gauge χ such that Aχ := A+∇g = const.
Following the work Le Balc’h-Martin ’23, the observability of (1)
holds for any T > 0 and any non-empty open set ω ⊂ T2.

▶ B ̸= 0 and there are finite order of zeros of ⟨B⟩γ on ∂ωγ⃗⊥ ?

▶ ⟨B⟩γ has infinite order of zeros ?
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A closely related work

• Morin-Rivière’24 prove the Quantum Unique Ergodicity for the
magnetic Laplacian on T2 under the condition ⟨B⟩γ > 0 everywhere, for
all γ⃗. In their setup, B cannot be derived from a magnetic potential A.
B̂0 =

ffl
T2 B is the total flux satisfying the quantization condition

B̂0 ∈ 2πZ. Their arugment leads to the same resolvent estimate as ours
in the non-zero flux case B̂0 ̸= 0.

• In the non-zero flux case B̂0 ̸= 0, Morin-Rivière used magnetic
Weyl-quantization and the second semiclassical measure approach in the
spirit of Anatharaman-Macià.

• In the zero flux case B̂0 = 0, the standard Weyl-quantization is
sufficient. Our argument is based on the normal form approach in the
spirit of Burq-Zworski.



Part II : Sketch of the Proof



A model example

Consider the model case A = (A1(y),A2 = 0),V = −|A1|2. Then the
magnetic Schrödinger equation writes

i∂tu +∆u − 2iA1(y)∂xu = 0.

Taking the Fourier transform in x :

i∂tuk + (∂2y − k2)uk + 2A1(y)kuk = 0.

Around a non-degenerate critical point y0 of A1 with
A′
1(y0) = 0,A′′

1 (y0) = −ω2
0 < 0,

A1(y) ≈ A1(y0)− ω2
0

(y − y0)
2

2
.

Consider uk 7→ vk := uke
−it(k2−A1(y0)k), then

i∂tvk + ∂2yvk − kω2
0(y − y0)

2vk = 0.



A model example, sequel

For k ≫ 1, take

vk(0) = cke
−

√
kω0(y−y0)

2

2

to be the ground state of the harmonic oscillator −∂2y + kω2
0(y − y0)

2.
Then

vk(t, y) = c(k)e−
√

kω0(y−y0)
2

2 −itk

which concentrates around y = y0 for all t ∈ R. So we cannot have
observability if a horizontal observation region ω does not contain the
line y = y0.



Proof under (MGCC) I: High-energy observability
By the standard compactness-uniqueness argument of Lebeau and the
unique continuation property w.r.t. HA,V , it suffices to prove the
high-energy observability. More precisely, Denote

Πh,ρu := χ

(
h2HA,V − 1

ρ

)
u, u ∈ L2(T2).

We need to prove for any T > 0, and sufficiently small 0 < h, ρ≪ 1,

∥Πh,ρu0∥2L2(T2) ≤ C

ˆ T

0

ˆ
ω

∣∣e−itHA,VΠh,ρu0(z)
∣∣2 dzdt ∀u0 ∈ L2(T2).

Under (MGCC), we will indeed prove a stronger high-energy observability
result in much shorter time, equivalent to our resolvent estimate :

Proposition
There exists a numerical constant T0 > 0 such that for any T ≥ T0,
there exist constants ρ0 > 0, h0 > 0 and C > 0 such that for any
ρ ∈ (0, ρ0), h ∈ (0, h0), we have (Obs)h,T ,ω :

∥Πh,ρu0∥2L2(T2) ≤ C

ˆ T

0

ˆ
ω

∣∣∣∣e−i th
1
2 HA,VΠh,ρu0(z)

∣∣∣∣2 dzdt ∀u0 ∈ L2(T2).

(4)
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Proof under (MGCC) II: Semiclassical measures
Though a quantitative argument is possible, we argue by contradiction for
clarity. If (Obs)h,T ,ω is untrue, there is a sequence (uh)0<h≪1 such that

∥uh∥L2(T2) = 1,

ˆ T

0

∥e−ith
1
2 HA,V uh∥2L2(ω)dt = o(1), h → 0+.

Up to extracting a subsequence, there exists a semiclassical defect
measure µ on Rt ×T ∗T2

z such that for any function ψ ∈ C 0
0 (Rt) and any

a ∈ C∞
c (T ∗T2

z), we have

⟨µ, ψ(t)a(z , ζ)⟩ = lim
n→+∞

ˆ
Rt×T2

z

ψ(t)(Opwh (a)uh)(t, z)uh(t, z)dzdt.

▶ The measure µ is supported in S∗T2, i.e.

supp(µ) ⊂ {(t, z , ζ) ∈ Rt × T ∗T2 : |ζ| = 1},

▶ For any t0 < t1, we have

µ((t0, t1)× T ∗T2) = t1 − t0, µ|(0,T0)×ω×S1 = 0.

▶ For a.e. t ∈ R,
ζ · ∇zµ(t, ·) = 0.

In particular, the support of µ is invariant under the geodesic flow
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ˆ
Rt×T2

z

ψ(t)(Opwh (a)uh)(t, z)uh(t, z)dzdt.

▶ Thanks to the invariant property and the fact that ω is open, we
have

µ =
∑

ζ0: periodic

µ|R×T2×{ζ0},

with only finitely-many periodic directions ζ0. We only need to show
that µ|R×T2×{ζ0} = 0 for any periodic ζ0.

▶ Up to changing coordinate, we may assume for ζ0 = (1, 0)



2nd semiclassical scale and 1d reduction

• Gauge : A = (A1(y),A2(x , y)). Our equation becomes

ih3/2∂tuh − Phuh = 0,

where
Ph = pw0 (hD) + hpw1 (z , hD) + h2pw2 (z , hD)

with symbols

p0 = |ζ|2 = ξ2 + η2,

p1 = 2A1(y)ξ + 2A2(x , y)η,

p2 = V + A2
1 + A2

2

• Need to perform a second microlocalization near the coisotropic
subspace {η = 0}. This could be realized simply by normal-form
reduction + positive commutator method. It turns out that the
second-semiclassical scale can be chosen as |η| ∼ h

1
4+



Normal form reduction
We search for Qh = Opwh (q(x , y , ξ)η) to average the potential A2(x , y)
through conjugation :

eQhPhe
−Qh =Ph + [Qh,Ph] +O(h2)

=Opw
h

(
p0 + 2hA1(y)ξ

)
+Opw

h

(
2hA2(x , y)η +

h

i
{qη, ξ2 + η2}

)
+O(h2)

=Opw
h

(
p0 + 2hA1(y)ξ

)︸ ︷︷ ︸
principal

+Opw
h

(
2h(A2(x , y) + iξ∂xq)η

)
+2ihOpw

h ((∂yq)η
2) +O(h2)︸ ︷︷ ︸

remainder=o(h3/2)

.

• To average A2, we choose q by solving

∂xq(x , y , ξ) = − 1

iξ
(A2 − ⟨A2⟩(1,0)(y)).

• The operator 2ihOpw
h (∂yqη

2) can be viewed as remainder only if η = o(h1/4),
this explains the choice of the second semiclassical scale. For wave packets
oscillating at scale η ≳ h1/4, we detect it transversal propagation via the
multiplier φ(y)y∂y .



Key 1d analysis

We now prove the “1d” observability of the equation

ih3/2∂tuh + h2∆x,yuh + 2ihA1(y)h∂xuh + 2ihA2(y)h∂yuh = oL2
t,x,y

(h
3
2 )

on finite union of blue horizonal strips containing all critical points of A1

in the interior :

Figure: Multiple strips



Key 1d analysis
• On a gap (bj , aj+1) of white strips, A′

1(y) ≥ c0 > 0 (or uniformly
negative). We use the localized multiplier θ( t

T )χ(y)(y − bj + ϵ0)∂y .
Thinking h∂x = 1, then the positive commutator comes from

−[ih
3
2 ∂t + h2∂2y + 2hA1(y), χ(y)(y − bj + ϵ0)∂y ]

=−2χ(y)h2∂2y + 2hχ(y)A′
1(y)(y − bj + ϵ0)︸ ︷︷ ︸

positive operators

+ l .o.t.︸ ︷︷ ︸
higher power in h + terms with ∂χ

.

• The positive commutator will essentially control

∥h∂yuh∥2L2
x,y

+ ∥h1/2uh∥2L2
x,y︸ ︷︷ ︸

principal thanks to (MGCC)

• On the other hand, the commutator involving
[ih3/2∂t , θ(t/T ) · · · h−1h∂y ] will finally contribute a main term in the
remainder

O(h1/2)

T
∥uh∥L2∥h∂yuh∥L2 ,

hence we need T ≥ T0 ≫ 1 (but independent of h).



Part III: Comments &
Perspectives



About the optimality

Assume for some periodic γ⃗, ⟨B⟩γ has a zero outside ωγ⃗⊥ .
To disprove (Obs)T ,ω :

▶ By changing coordinate, translation and gauge transform, we may
assume that ωγ⃗⊥ are horizontal strips and A = (A1(y),A2(x , y))
such that a critical point y0 = 0 of A1(y) is outside ωγ⃗⊥ and
A′′
1 (0) ̸= 0.

▶ Well-prepared modes : Preparing the highly-concentrated sequences
as in the model example (there A2 = ⟨A2⟩(1,0)(y)).

▶ Since the normal form transform is invertible, we do the inverse
normal form transform (de-average A2) as in the previous proof to
transfer the well-prepared modes in the model example to get the
desired modes.

▶ Additional point : To disprove the observability (Obs)T ,ω, only
oL2(h2) terms can be viewed as remainders (comparing to oL2(h3/2)).
We need to do one step further normal form to average symbols that
are OL2(h2) in a priori.



Perspectives

▶ Our result could be generalized to the case with non-zero flux
B̂0 ̸= 0 on T2, under (MGCC).

▶ In terms observability, HA,V is clearly not a perturbation of −∆,
comparing to −∆+ V . It is challenging to study the question of
rough potential or rough control, as in the context of −∆+ V . It is
possible to relax the regularity of the electronic potential V .

▶ The case d ≥ 3 ? Description of the semiclassical measures for the
magnetic Schrödinger equations ? Delocalization ? Concentration ?



Thank you for your attention !
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