ON THE CONTROLLABILITY OF A SPECIAL CLASS OF COUPLED WAVE SYSTEMS

Jingrui NIU

Sorbonne Université

ICIAM, Tokyo, 22 August 2023

Based on joint work with Pierre Lissy

- Introduction
 - General settings
 - Motivations
 - Preliminaries

- 2 Controllability of Coupled Wave Systems
 - A simple model
 - Characterization of coupling structure
 - Outline for the proof

2 / 16

General settings

We consider Ω to be a bounded domain \mathbb{R}^d with smooth boundary. Let $\omega \subset \Omega$ be a subdomain. We aim to investigate the exact/null controllability of the following type of coupled wave systems:

$$\begin{cases} (\partial_t^2 - D\Delta)U + AU &= BF\mathbf{1}_{\omega} & \text{in } (0,T) \times \Omega, \\ U &= 0 & \text{on } (0,T) \times \partial \Omega, \\ (U,\partial_t U)|_{t=0} &= (U^0,U^1) & \text{in } \Omega, \end{cases}$$
 (GCW)

with here

$$D=\mathrm{diag}(d_1,\cdots,d_n)_{n\times n}, A\in\mathcal{M}_{n\times n}(\mathbb{R}), \text{ and } B\in\mathcal{M}_{n\times m}(\mathbb{R})(m\leq n)$$

and $F = (F_1, \dots, F_m)$ is our control.

A REVIEW OF LITERATURE

There is a large literature on the controllability of the wave equations.

- For a single wave equation: Bardos-Lebeau-Rauch '92, Lions '88, Baudouin-De Buhan-Ervedoza '13 · · ·
- For wave systems in same speed: Alabau-Boussouira '03,'13, Alabau-Boussouira-Léautaud '13, Liard-Lissy '17, Lissy-Zuazua '19, Cui-Laurent-Wang '20
- For wave systems in different speeds: Dehman-Le Rousseau-Léautaud '14, Lissy-Zuazua '19, N '21

Some links with other problems

- Ammar-Khodja-Benabdallah-Dupaix-González-Burgos '09 (parabolic)
- Li-Rao '12, '13 (synchronisation of waves)

GOAL

Under the geometric assumptions+ algebraic conditions, the system GCW is exactly controllable.

GEOMETRIC CONTROL CONDITION

Let p_g be the principal symbol of the operator $\partial_t^2 - \Delta_g$.

DEFINITION

For $\omega \subset \Omega$ and T>0, we shall say that the pair (ω, T, p_g) satisfies GCC if every general bicharacteristic of p_g meets ω in a time t < T.

This is a very important condition when one considers the control of waves. One can refer Rauch-Taylor 74', Bardos-Lebeau-Rauch 88',92', Burq-Gérard 97',...

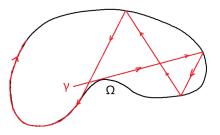


FIGURE: General bicharacteristics

Kalman conditions

DEFINITION (KALMAN OPERATOR)

Let m, n be two positive integers. Assume that $X \in \mathcal{M}_n(\mathbb{R})$ and $Y \in \mathcal{M}_{n,m}(\mathbb{R})$. Moreover, let D be a diagonal matrix. Then, the Kalman operator associated with $(-D\Delta + X, Y)$ is the matrix operator $\mathscr{K} = [-D\Delta + X|Y] = [(D\Delta + X)^{n-1}Y|\cdots|(D\Delta + X)Y|Y]: D(\mathscr{K}) \subset (L^2)^{nm} \to (L^2)^n)$.

DEFINITION (OPERATOR KALMAN RANK CONDITION)

We say that the Kalman operator $\mathscr K$ satisfies the operator Kalman rank condition if $\operatorname{Ker}(\mathscr K^*)=\{0\}.$

MICROLOCAL DEFECT MEASURE-1

Based on Gérard-Leichtnam 93' and Burq 97'. Let $(u^k)_{k\in\mathbb{N}}$ be a bounded sequence in $L^2_{loc}(\mathbb{R}^+;L^2(\Omega))$, converging weakly to 0 and such that

$$\begin{cases} (\partial_t^2 - \Delta)u^k = 0, \\ u^k|_{\partial\Omega} = 0. \end{cases}$$
 (1)

Let \underline{u}^k be the extension by 0 across the boundary of Ω . Then the sequence \underline{u}^k is bounded in $L^2_{loc}(\mathbb{R}_t; L^2(\mathbb{R}^d))$. Let $\underline{\mathcal{A}}$ be the space of classical pseudo-differential operators of order 0 with compact support in $\mathbb{R}^+ \times \mathbb{R}^d$

Proposition

There exists a subsequence of (\underline{u}^k) (still noted by (\underline{u}^k)) and $\underline{\mu} \in \underline{\mathcal{M}}^+$ such that

$$\forall A \in \underline{A}, \quad \lim_{k \to \infty} (A\underline{u}^k, \underline{u}^k)_{L^2} = \langle \underline{\mu}, \sigma(A) \rangle, \tag{2}$$

where $\sigma(A)$ is the principal symbol of the operator A (which is a smooth function, homogeneous of order 0 in the variable ξ , i.e. a function on $S^*((\mathbb{R}^+ \times \mathbb{R}^d))$.

MICROLOCAL DEFECT MEASURE-2

For the microlocal defect measure $\underline{\mu}$ defined before, we have the following properties.

- $\operatorname{supp}(\underline{\mu}) \subset \operatorname{\it Char}(P) = \{(t,x,\tau,\xi); x \in \overline{M}, \tau^2 = |\xi|_x^2\}.$
- \bullet $\,\mu$ is invariant along the generalized bicharacteristic flow.

A SIMPLE MODEL

$$\begin{cases}
(\partial_t^2 - \Delta)u_1 + u_2 &= 0 & \text{in } (0, T) \times \Omega, \\
(\partial_t^2 - 2\Delta)u_2 + u_3 &= 0 & \text{in } (0, T) \times \Omega, \\
(\partial_t^2 - 2\Delta)u_3 &= \mathbf{f} \mathbf{1}_{\omega} & \text{in } (0, T) \times \Omega,
\end{cases}$$
(M2)

with the Dirichlet boundary condition and some initial data. This system has the following features:

- f is only acting directly on u_3 ,
- u_2 and u_3 are coupled via a weak coupling (lower order),
- u_1 and u_2 are coupled via a very weak coupling (lower order+different speed).
- \Rightarrow Compatibility conditions.

QUESTION

- What are the compatibility conditions for this system (M2)?
- Is it controllable?

ON REGULARITY OF THE SYSTEM (M2)

For this example system, we begin with zero initial conditions.

$(u_1,u_2,u_3)\in H^4\times H^2\times H^1$

In fact, it is classic to prove that

$$u_3 \in C^0([0,T], H^1) \cap C^1([0,T], L^2),$$

 $u_2 \in C^0([0,T], H^2) \cap C^1([0,T], H^1).$

For u_1 , $\Box_1 u_1 = -u_2$, which implies that $\Box_2 \Box_1 u_1 = -\Box_2 u_2 = u_3$. Hence, we obtain that $\Box_2 u_1 \in C^0 H^2 \cap C^1 H^1$. And we already know that $\Box_1 u_1 = -u_2 \in C^0 H^2 \cap C^1 H^1$. Take the difference, we obtain that $\Delta u_1 \in C^0 H^2 \cap C^1 H^1$ which implies that $u_1 \in C^0 H^4 \cap C^1 H^3$.

Compatibility conditions

$$(-\Delta)^2u_1+\Delta u_2\in H^1_0.$$

COMPATIBILITY CONDITIONS

We introduce a transform ${\mathcal S}$ by

$$S\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} D_t^3 u_1, \\ D_t u_2, \\ u_3. \end{pmatrix}.$$

Moreover, (v_1, v_2, v_3) satisfies the following system:

$$\begin{cases}
\Box_1 v_1 + D_t^2 v_2 = 0 \text{ in } (0, T) \times \Omega, \\
\Box_2 v_2 + D_t v_3 = 0 \text{ in } (0, T) \times \Omega, \\
\Box_2 v_3 = f \text{ in } (0, T) \times \Omega.
\end{cases}$$
(M2v)

Using the identity $-D_t^2=2\square_1-\square_2$, we have that $\square_1(v_1-2v_2)-D_tv_3=0$. Hence, $\square_1(D_tv_1-2D_tv_2+2v_3)=f$. However, we know that $D_tv_1-2D_tv_2+2v_3=(-\Delta)^2u_1+\Delta u_2+u_3$, which implies that $(-\Delta)^2u_1+\Delta u_2\in H_0^1$.

A WAVE SYSTEM COUPLED WITH DIFFERENT SPEEDS

To generalize the previous model, we deal with the controllability of the following type of coupled wave systems:

$$\begin{cases} (\partial_t^2 - D\Delta)U + AU &= \hat{b}f \mathbf{1}_{\omega} & \text{in } (0, T) \times \Omega, \\ U &= 0 & \text{on } (0, T) \times \partial \Omega, \\ (U, \partial_t U)|_{t=0} &= (U^0, U^1) & \text{in } \Omega, \end{cases}$$
 (CWS)

with here

$$D = \left(\begin{array}{cc} d_1 I d_{n_1} & 0 \\ 0 & d_2 I d_{n_2} \end{array} \right)_{n \times n}, A = \left(\begin{array}{cc} 0 & A_1 \\ 0 & A_2 \end{array} \right)_{n \times n}, \text{ and } \hat{b} = \left(\begin{array}{c} 0 \\ b \end{array} \right)_{n \times 1},$$

where $n=n_1+n_2$ and $d_1\neq d_2$. $A_1\in \mathcal{M}_{n_1,n_2}(\mathbb{R})$ and $A_2\in \mathcal{M}_{n_2}(\mathbb{R})$ are two given coupling matrices and $b\in \mathbb{R}^{n_2}$.

Kalman Rank Condition

Proposition

We denote by $\mathcal{K} = [-D\Delta + A|\hat{b}]$ the Kalman operator associated with System (CWS). Then, $Ker(\mathcal{K}^*) = \{0\}$ is equivalent to satisfying all the following conditions:

- (A₂, b) satisfies the usual Kalman rank condition;
- **3** Assume that $A_1 = \alpha = (\alpha_1, \dots, \alpha_{n_2})$. Then $\forall \lambda \in \sigma(-\Delta)$, α satisfies

$$\alpha \left(\sum_{k=0}^{n_2-2} (d_1 - d_2)^k \lambda^k \sum_{j=k+1}^{n_2} a_j A_2^{j-1-k} + (d_1 - d_2)^{n_2-1} \lambda^{n_2-1} I d_{n_2} \right) \widehat{b} \neq 0,$$

where $(a_j)_{0 \le j \le n_2}$ are the coefficients of the the characteristic polynomial of the matrix A_2 , i.e. $\chi(X) = X^{n_2} + \sum_{j=0}^{n_2-1} a_j X^j$, with the convention that $a_{n_2} = 1$.

Controllability of the coupled wave system

Theorem

Given T > 0, suppose that:

- (ω, T, p_{d_i}) satisfies GCC, i = 1, 2.
- Compatibility conditions.
- **1** The Kalman operator $\mathcal{K} = [-D\Delta + A|\hat{b}]$ satisfies the operator Kalman rank condition, i.e. $Ker(\mathcal{K}^*) = \{0\}$.

Then the system (CWS) is exactly controllable.

Remark

As for compatibility conditions, for example, in the simple model (M2), $(u_1, u_2, u_3) \in H^4 \times H^2 \times H^1$, we have

$$(-\Delta)^2 u_1 + \Delta u_2 \in H_0^1.$$

OUTLINE FOR THE PROOF

We prove the above theorem within three steps.

- At first, we simplify the system (CWS), using a Brunovsky normal form. Based on the equivalent Kalman condition, we prove the exact controllability for the simplified system.
- In the second step, we use iteration schemes to obtain the compatibility conditions associated with the coupling structure. Therefore, we prepare the appropriate state spaces.
- In the final step, we use HUM to derive the observability inequality and then follow the compactness-uniqueness procedure. At last, the unique continuation property is given by the Kalman rank condition.

Thank you for your attention!