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General settings

We consider Ω to be a bounded domain Rd with smooth boundary. Let ω ⊂ Ω be
a subdomain. We aim to investigate the exact/null controllability of the following
type of coupled wave systems: (∂2

t − D∆)U + AU = BF1ω in (0,T )× Ω,
U = 0 on (0,T )× ∂Ω,

(U, ∂tU)|t=0 = (U0,U1) in Ω,
(GCW)

with here

D = diag(d1, · · · , dn)n×n,A ∈ Mn×n(R), and B ∈ Mn×m(R)(m ≤ n)

and F = (F1, · · · ,Fm) is our control.
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A review of literature

There is a large literature on the controllability of the wave equations.

For a single wave equation: Bardos-Lebeau-Rauch ’92, Lions ’88,
Baudouin-De Buhan-Ervedoza ’13 · · ·
For wave systems in same speed: Alabau-Boussouira ’03,’13,
Alabau-Boussouira-Léautaud ’13, Liard-Lissy ’17, Lissy-Zuazua ’19,
Cui-Laurent-Wang ’20

For wave systems in different speeds: Dehman-Le Rousseau-Léautaud ’14,
Lissy-Zuazua ’19, N ’21

Some links with other problems

Ammar-Khodja-Benabdallah-Dupaix-González-Burgos ’09 (parabolic)

Li-Rao ’12, ’13 (synchronisation of waves)

Goal
Under the geometric assumptions+ algebraic conditions, the system GCW is
exactly controllable.
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Geometric Control Condition

Let pg be the principal symbol of the operator ∂2
t −∆g .

Definition

For ω ⊂ Ω and T > 0, we shall say that the pair (ω,T , pg ) satisfies GCC if every
general bicharacteristic of pg meets ω in a time t < T .

This is a very important condition when one considers the control of waves. One
can refer Rauch-Taylor 74’, Bardos-Lebeau-Rauch 88’,92’, Burq-Gérard 97’,· · ·

Figure: General bicharacteristics
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Kalman conditions

Definition (Kalman operator)

Let m, n be two positive integers. Assume that X ∈ Mn(R) and Y ∈ Mn,m(R).
Moreover, let D be a diagonal matrix. Then, the Kalman operator associated with
(−D∆+ X ,Y ) is the matrix operator K = [−D∆+ X |Y ] =
[(D∆+ X )n−1Y | · · · |(D∆+ X )Y |Y ] : D(K ) ⊂ (L2)nm → (L2)n).

Definition (Operator Kalman rank condition)

We say that the Kalman operator K satisfies the operator Kalman rank condition
if Ker(K ∗) = {0}.
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Microlocal defect measure-1

Based on Gérard-Leichtnam 93’ and Burq 97’. Let (uk)k∈N be a bounded
sequence in L2loc(R

+; L2(Ω)), converging weakly to 0 and such that{
(∂2

t −∆)uk = 0,

uk |∂Ω = 0.
(1)

Let uk be the extension by 0 across the boundary of Ω. Then the sequence uk is
bounded in L2loc(Rt ; L

2(Rd)). Let A be the space of classical pseudo-differential
operators of order 0 with compact support in R+ × Rd

Proposition

There exists a subsequence of (uk) (still noted by (uk)) and µ ∈ M+ such that

∀A ∈ A, lim
k→∞

(Auk , uk)L2 = ⟨µ, σ(A)⟩, (2)

where σ(A) is the principal symbol of the operator A (which is a smooth function,
homogeneous of order 0 in the variable ξ, i.e. a function on S∗((R+ × Rd)).
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Microlocal defect measure-2

For the microlocal defect measure µ defined before, we have the following
properties.

supp(µ) ⊂ Char(P) = {(t, x , τ, ξ); x ∈ M, τ 2 = |ξ|2x}.
µ is invariant along the generalized bicharacteristic flow.
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A simple model

 (∂2
t −∆)u1 + u2 = 0 in (0,T )× Ω,

(∂2
t − 2∆)u2 + u3 = 0 in (0,T )× Ω,

(∂2
t − 2∆)u3 = f 1ω in (0,T )× Ω,

(M2)

with the Dirichlet boundary condition and some initial data. This system has the
following features:

f is only acting directly on u3,

u2 and u3 are coupled via a weak coupling (lower order),

u1 and u2 are coupled via a very weak coupling (lower order+different speed).

⇒ Compatibility conditions.

Question

What are the compatibility conditions for this system (M2)?

Is it controllable?
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On regularity of the system (M2)

For this example system, we begin with zero initial conditions.

(u1, u2, u3) ∈ H4 × H2 × H1

In fact, it is classic to prove that

u3 ∈ C 0([0,T ],H1) ∩ C 1([0,T ], L2),

u2 ∈ C 0([0,T ],H2) ∩ C 1([0,T ],H1).

For u1, □1u1 = −u2, which implies that □2□1u1 = −□2u2 = u3. Hence, we
obtain that □2u1 ∈ C 0H2 ∩ C 1H1. And we already know that
□1u1 = −u2 ∈ C 0H2 ∩ C 1H1. Take the difference, we obtain that
∆u1 ∈ C 0H2 ∩ C 1H1 which implies that u1 ∈ C 0H4 ∩ C 1H3.

Compatibility conditions

(−∆)2u1 +∆u2 ∈ H1
0 .
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Compatibility conditions

We introduce a transform S by

S

 u1
u2
u3

 =

 v1
v2
v3

 =

 D3
t u1,

Dtu2,
u3.

 .

Moreover, (v1, v2, v3) satisfies the following system: □1v1 + D2
t v2 = 0 in (0,T )× Ω,

□2v2 + Dtv3 = 0 in (0,T )× Ω,
□2v3 = f in (0,T )× Ω.

(M2v)

Using the identity −D2
t = 2□1 −□2, we have that □1(v1 − 2v2)− Dtv3 = 0.

Hence, □1(Dtv1 − 2Dtv2 + 2v3) = f . However, we know that
Dtv1 − 2Dtv2 + 2v3 = (−∆)2u1 +∆u2 + u3, which implies that
(−∆)2u1 +∆u2 ∈ H1

0 .
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A wave system coupled with different speeds

To generalize the previous model, we deal with the controllability of the following
type of coupled wave systems: (∂2

t − D∆)U + AU = b̂f 1ω in (0,T )× Ω,
U = 0 on (0,T )× ∂Ω,

(U, ∂tU)|t=0 = (U0,U1) in Ω,
(CWS)

with here

D =

(
d1Idn1 0
0 d2Idn2

)
n×n

,A =

(
0 A1

0 A2

)
n×n

, and b̂ =

(
0
b

)
n×1

,

where n = n1 + n2 and d1 ̸= d2. A1 ∈ Mn1,n2(R) and A2 ∈ Mn2(R) are two given
coupling matrices and b ∈ Rn2 .
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Kalman rank condition

Proposition

We denote by K = [−D∆+ A|b̂] the Kalman operator associated with System
(CWS). Then, Ker(K∗) = {0} is equivalent to satisfying all the following
conditions:

1 n1 = 1;

2 (A2, b) satisfies the usual Kalman rank condition;

3 Assume that A1 = α = (α1, · · · , αn2). Then ∀λ ∈ σ(−∆), α satisfies

α

n2−2∑
k=0

(d1 − d2)
kλk

n2∑
j=k+1

ajA
j−1−k
2 + (d1 − d2)

n2−1λn2−1Idn2

 b̂ ̸= 0,

(KC)
where (aj)0≤j≤n2 are the coefficients of the the characteristic polynomial of

the matrix A2, i.e. χ(X ) = X n2 +
∑n2−1

j=0 ajX
j , with the convention that

an2 = 1.
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Controllability of the coupled wave system

Theorem

Given T > 0, suppose that:

1 (ω,T , pdi ) satisfies GCC, i = 1, 2.

2 Compatibility conditions.

3 The Kalman operator K = [−D∆+ A|b̂] satisfies the operator Kalman rank
condition, i.e. Ker(K∗) = {0}.

Then the system (CWS) is exactly controllable.

Remark

As for compatibility conditions, for example, in the simple model (M2),
(u1, u2, u3) ∈ H4 × H2 × H1, we have

(−∆)2u1 +∆u2 ∈ H1
0 .
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Outline for the proof

We prove the above theorem within three steps.

1 At first, we simplify the system (CWS), using a Brunovskỳ normal form.
Based on the equivalent Kalman condition, we prove the exact controllability
for the simplified system.

2 In the second step, we use iteration schemes to obtain the compatibility
conditions associated with the coupling structure. Therefore, we prepare the
appropriate state spaces.

3 In the final step, we use HUM to derive the observability inequality and then
follow the compactness-uniqueness procedure. At last, the unique
continuation property is given by the Kalman rank condition.
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Thank you for your attention!
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