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Korteweg-de Vries (KdV) model

Figure: Shallow water model. Figure: Recreation of a solitary wave on
a canal by Heriot-Watt University.

In terms of the physical parameters, the KdV equation reads
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An open problem

Consider the KdV equation on interval

∂ty + ∂3
xy + ∂xy + y∂xy = 0, in (0, T )× (0, L),

y(t, 0) = y(t, L) = 0, ∂xy(t, L) = u(t), in (0, T ),

y(0, x) = y0(x), y(T, x) = y1(x), in (0, L).

➣ Let critical lengths set

N := {2π
√

k2 + kl + l2

3
: k, l ∈ N∗}

Rosier (1997): the linearized system is controllable for any time ⇔ L ̸∈ N .

Longstanding problem
Is the KdV equation small-time locally controllable for all L ∈ N?
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L ∈ N := {2π
√

k2 + kl + l2

3
: k, l ∈ N∗}

➣ Rosier (1997): the linear system is not controllable for any time;

➣ Coron–Crépeau (2003): nonlinear system is small-time locally controllable,
provided that k = l is the only solution pair;

➣ Cerpa (2007), Cerpa–Crépeau (2009): large-time locally controllable for all
critical lengths;

➣ Coron–Koenig–Nguyen (2020): not small-time locally controllable if 2k+ l ̸∈ 3N∗;

A complete answer (N.–Xiang, 2025)
The system is not small-time locally controllable if 2k + l ∈ 3N∗ and k ̸= l.
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Outline of the presentation

1 Introduction

2 A novel classification

3 Strategy of proof
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Linear result: N , M , and H

By Rosier (1997), critical lengths set N := {2π
√

k2+kl+l2

3
: k, l ∈ N∗}. For the

linearized KdV system,

If L /∈ N , the linearized system is controllable for any T > 0;

If L ∈ N , the linearized system is controllable for any T > 0. L2(0, L) = H ⊕M .
H: reachable subspace
M : unreachable subspace

M := SpanR{ℜφλ,ℑφλ},

where φλ solves:

φ′′′
λ + φ′

λ + iλφλ = 0,

φλ(0) = φλ(L) = φ′
λ(0) = φ′

λ(L) = 0.

What about the nonlinear system?
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A first nonlinear result for L ∈ N

A significant step by Coron–Crépeau (2003).

Case dimM = 1
The nonlinear system is small-time locally controllable for the critical lengths such that
dimM = 1.

Note: in this case, the linearized system is uncontrollable!

This case contains infinitely many critical lengths:

{L = 2kπ : ̸ ∃(m,n) such that m2 + n2 +mn = 3k2 and m ̸= n.}

Example: For L = 2π ∈ N , M = R(1− cosx) and dimM = 1.
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Power series expansion method

Idea: decompose solutions y and search controls u in the form

y = εy1 + ε2y2 + ε3y3 + · · · ,

u = εu1 + ε2u2 + ε3u3 + · · · .

Thus {
∂ty1 + ∂3

xy1 + ∂xy1 = 0,
∂xy1(t, L) = u1(t).{
∂ty2 + ∂3

xy2 + ∂xy2 = −y1∂xy1,
∂xy2(t, L) = u2(t).

...

Fix initial states y1|t=0 = y2|t=0 = 0. Find u1 and u2 such that the final states satisfy
y1|t=T = 0 and the projection of y2|t=T on M is a given (nonzero) element in M .

y1|t=0 = 0
u1
; y1|t=T = 0,

y2|t=0 = 0
u2
; y2|t=T ∈ M.
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A key quantity QM

Let (φ, ip) be an eigenmode in M :

φ′′′ + φ′ + ipφ = 0,

φ(0) = φ(L) = φ′(0) = φ′(L) = 0.

A key quantity associated with the projection on M :

QM (φ; y) :=

∫ ∞

0

∫ L

0

|y1(t, x)|2e−iptφ′(x)dxdt.

Vanishing of QM (Coron–Crépeau 2003)
Let L = 2kπ. Then QM (1− cosx; y1) =

∫ T

0

∫ L

0
y1(t, x)

2 sinxdxdt ≡ 0.

M ̸= ∅ implies y ∼ εy1 is not controllable.

QM ≡ 0 implies y ∼ εy1 + ε2y2 is still not controllable...

Further consider y ∼ εy1 + ε2y2 + ε3y3: the small-time controllability.
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More complicated cases

For dimM = 2, in 2007, following the idea of Coron–Crépeau (2003), Cerpa
adapted the power series expansion method to prove a large-time local
controllability result.

Following a similar approach, Cerpa–Crépeau (2009) proved a large-time locally
controllable for all critical lengths

Case dimM = 2 (Cerpa 2007)
QM is not identically 0.

Due to this observation, he showed that the second order approximated system can
arrive at a certain direction φ0 ∈ M at any short time.
Then, the large-time controllability is fulfilled by a rotation process. While the rotation
from φ0 to any direction eiptφ0 takes a time T ≥ π

p
.
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Rotation process
Let M = SpanR{φ1, φ2} with φ = φ1 + iφ2 satisfying:

φ′′′ + φ′ + ipφ = 0,

φ(0) = φ(L) = φ′(0) = φ′(L) = 0.

Then dimM = 2 and one notices that the solution y to KdV system projects on M
verifies a rotation via

φ1

φ2


d

dt
(y(t), φ1)L2(0,L) = −p(y(t), φ2)L2(0,L),

d

dt
(y(t), φ2)L2(0,L) = p(y(t), φ1)L2(0,L),

Since the solution can reach the direction φ0 = αφ1 + βφ2 within T0, the rotation
process ⇒ reach all states in M if T ≥ T0 +

2π
p

.
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Comments on rotation process

This rotation approach can not answer the open problem on small-time
controllability for dimM = 2.

Because of this natural process, since then people do not distinguish different L
such that dimM = 2. For example (k, l) = (2, 1) and (k, l) = (4, 1).

For other cases dimM > 2, it suffices to benefit on the different rotation vitesse
of eigenfunctions to reach each direction in M .

Example (dimM = 4)
Assume that M = Span{φ1, φ2, ϕ1, ϕ2}.

➣ the state y can reach a certain direction φ0 = αφ1 + βφ2 + γϕ1 + δϕ2;

➣ the angle velocity of φi is different from the velocity of ϕj ;

➣ simple superposition of linear/nonlinear solutions ⇒ reach every state in M for T
large enough.
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Old classification: based on the parity of dim M

Inspired by the rotation process, the following classification has been introduced.

0. C := R+ \ N . Then M = {0}.

1. N1 :=
{
L ∈ N ; ∃!(k, l) and k = l

}
. Then dimM = 1 .

2. N2 :=
{
L ∈ N ; ∃!(k, l) and k > l

}
. Then dimM = 2.

3. N3 :=
{
L ∈ N ; ∃n ⩾ 2 different pairs (k, l) , and k ̸= l

}
. Then dimM = 2n.

4. N4 :=
{
L ∈ N ; ∃n ⩾ 2 different pairs (k, l) , and one of them satisfies k = l

}
.

Then dimM = 2n− 1.
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Summary: Controllability results

Small-time controllability Large-time controllability

C Rosier(1997) Rosier(1997)

N1 Coron–Crépeau (2003) Coron–Crépeau (2003)

N2

Partial result:
Coron–Koenig–Nguyen

(2020)
Cerpa (2007)

N3

Partial result:
Coron–Koenig–Nguyen

(2020)
Cerpa–Crépeau (2009)

N4 Unknown Cerpa–Crépeau (2009)

Table: Control results based on the parity of dim M
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Fruitful results on different topics

Exponential stabilization Asymptotic stability

C Coron–Lv (2014)
Perla-Menzala–

Vasconcellos–Zuazua
(2002)

N1 Unknown Chu–Coron–Shang (2015)
Nguyen (2021)

N2 Coron–Rivas–Xiang (2017) Tang–Chu–Shang–Coron
(2018) Nguyen (2021)

N3 Coron–Rivas–Xiang (2017) Partial result: Nguyen
(2021)

N4 Unknown Unknown

Table: Other results based on the parity of dim M
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A surprising negative result

The breakthrough result on small-time controllability is as follows:

Coron–Koenig–Nguyen (2020)
By adding another assumption:

every pair (k, l) must satisfy 2k + l ̸∈ 3N∗,

small-time controllability cannot be achieved for such critical lengths.

Note: in such case, dimM must be even. But meanwhile, even in the case dimM = 2
there are many critical lengths that do not satisfy such an assumption.

However, their result cannot match the old classification very well. And in their paper,
they made no further comments on this condition 2k + l ̸∈ 3N∗.
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Motivations

From a limiting perspective, what happens when L → N?

Question
When L → L0 ∈ N ,

➣ can we find L2(0, L) = H(L)⊕M(L) such that H(L) ∼ H(L0) and
M(L) ∼ M(L0)?

➣ asymptotic behaviors for H(L) and M(L)?

➣ influence of H(L) and M(L) in nonlinear case?

Briefly, M is formulated through a limiting process

M(L) → M(L0) as L → L0 ∈ N .
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A related operator AL

Our point of view is based on a different operator:

AL : φ 7→ −φ′′′ − φ′

with
D(AL) = {φ ∈ H3(0, L) : φ(0) = φ(L) = 0, φ′(0) = φ′(L)}.

✲ AL is skew-adjoint⇒ good spectral properties.

✽ Not exactly compatible with the linearized KdV.
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Two types of eigenfunctions

Consider the eigenvalues of the operator AL:{
f ′′′ + f ′ + iλf = 0, in (0, L),
f(0) = f(L) = f ′(0)− f ′(L) = 0,

Type 1 and Type 2 eigenfucntions
➣ If 2k + l ̸∈ 3N∗, ∃!φ (Type 1) such that φ′(0) = φ′(L) = 0.

➣ If 2k + l ∈ 3N∗, solutions in the form f = C1φ+ C2φ̃.
φ̃ (Type 2): φ̃′(0) = φ̃′(L) ̸= 0 and φ and φ̃ are linearly independent.

Type 1: exist for all L ∈ N ,
Type 2: only exist when 2k + l ∈ 3N∗!
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Eigenmodes

The limiting problem AL as L → L0: a perturbation of AL0 .

⇒ the asymptotic behaviors depend on the perturbation of both Type 1 and Type 2
eigenfunctions around L0.

k = l 2k + l /∈ 3N∗ 2k+l ∈ 3N∗, k ̸= l

Eigenvalues zero (double) nonzero (simple) nonzero (double)

Eigenfunctions both Type 1 and 2 only Type 1 both Type 1 and 2

|λL − λL0 | O(|L− L0|) O(|L− L0|2) O(|L− L0|)
“Neumann

error" O(1) O(|L− L0|) O(1)

Inspired by these, for the classification of L, the effective factor is not dimM but the
type of 2k + l mod 3.
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Novel Classification

Let L ∈ N . We say that (k, l) is an unreachable pair if

k2 + kl + l2 = 3(
L

2π
)2 ⇔ L = 2π

√
k2 + kl + l2

3
.

Definition (Classification of the unreachable pairs (k, l))
1. S1(L) := {(k, l) : k = l},
2. S2(L) := {(k, l) : k ≡ l mod 3, k ̸= l},
3. S3(L) := {(k, l) : k ̸≡ l mod 3}.

Definition (Classification of critical lengths)
1. N 1 := {L ∈ N : ∃!(k, l) ∈ S1(L)},

2. N 2 := {L ∈ N : all (k, l) ∈ S3(L)},
3. N 3 := {L ∈ N : ∃(k, l) ∈ S2(L)}.
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Main result

Theorem (N.–Xiang, 2025)
Let L ∈ N 3. Then the system is not small-time locally null-controllable with controls in
H

4
3 and initial and final datum in H4(0, L) ∩H1

0 (0, L).

More precisely, ∃T0, ε > 0 s.t. ∀δ > 0, there exists some y0 satisfying ∥y0∥H4 < δ s.t.
for all control u with ∥u∥H4/3(0,T0)

< ε0, we have

y(T0, ·) ̸≡ 0.

A complete answer to the open problem:

L N 1 N 2 N 3

Eigenfunctions Type 1 and 2 Type 1 Type 1 and 2

dimM 1 even any integer

Small-time
controllability

Positive
[CC, 2003]

Negative
[CKN, 2020]

Negative
Our Thm
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Idea of proof

Our proof primarily relies on

1. Novel classification;

2. A trapping direction:

2.1 Reduction approach;
2.2 The remaining case under the new classification is degenerate;
2.3 A higher-order expansion and microlocal analysis techniques.

3. Obstruction to small-time controllability.
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Trapping direction

A major step is to construct a trapping direction.
y: solution to KdV with y(0, ·) = εΨ(0, ·) and u = 0,

∥y(t, ·)− εΨ(t, ·)∥L2(0,L) ≲ ε2, for t small.

Ψ(t, x): trapping direction{
∂tΨ(t, x) + ∂3

xΨ(t, x) + ∂xΨ(t, x) = 0,
Ψ(t, 0) = Ψ(t, L) = ∂xΨ(t, 0) = ∂xΨ(t, L) = 0.

After that, using a standard contradiction argument (with some effort...), we conclude
the small-time controllability fails.
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Construction of a trapping direction

Based on power series expansion. Recall in Coron–Crépeau (2003)

QM (φ; y) :=

∫ ∞

0

∫ L

0

|y(t, x)|2e−iptφ′(x)dxdt.

φ(x) =

3∑
j=1

(ηj+1 − ηj)e
ηj+2x ∈ M

with η3
j + ηj + ip = 0.

QM ≡ 0 implies y ∼ εy1 + ε2y2 is still not controllable.

Further consider y ∼ εy1 + ε2y2 + ε3y3: the small-time controllability.
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Construction of a trapping direction

Coron–Koenig–Nguyen (2020) first view QM as a Fourier transform w.r.t. t.

QM =

∫ L

0

Ft→p(|y|2(·, x)φ′(x))dx.

After a direct computation,

QM =

∫ L

0

∫ ∞

0

|y(t, x)|2φx(x)e
−iptdtdx =

∫
R
û(τ)û(τ − p)

∫ L

0

B(τ, x)dxdτ,

B(τ, x) =

∑3
j=1(e

λj+1L − eλjL)eλj+2x∑3
j=1(λj+1 − λj)e−λj+2L

·
∑3

j=1(e
λ̃j+1L − eλ̃jL)eλ̃j+2x∑3

j=1(λ̃j+1 − λ̃j)e−λ̃j+2L
· φ′(x).

• λj : λ3
j + λj + iτ = 0, λ̃j : λ̃3

j + λ̃j − i(τ̄ − p) = 0, j = 1, 2, 3.
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Reduction approach

For

QM =

∫
R
û(τ)û(τ − p)

∫ L

0

B(τ, x)dxdτ.

They introduced a reduction approach:∫ L

0
B(τ, x)dx = E

|τ |
4
3
+O(|τ |−1)

Coercive estimates for QM :∫ ∞

0

∫ L

0

|y(t, x)|2e−iptφx(x)dxdt ∼ ∥u∥2
H

− 2
3
(E +O(1)T ) .

Construct Ψ = ℜ(Ee−iptφx).
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Degenerate case

Notice that L ∈ N 3 ⇒ E = 0 in Coron–Koenig–Nguyen’s approach.

L ∈ N 3 is a degenerate case.

The appearance of Type 2 eigenfunctions.
More delicate analysis to detect the non-vanishing term at higher orders of B
and QM .

The regularity level is lower: (1 + |Dt|2)−
1
6 involves.

More techniques in microlocal analysis + specific lemmas concerning Sobolev
norms on compactly supported functions.
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Refined reduction approach

Our refined reduction approach:

Step 1:
∫ L

0
B(τ, x)dx = E

|τ |2 +O(|τ |−
7
3 ).

Step 2: coercive estimate of QM∫ ∞

0

∫ L

0

|y(t, x)|2e−iptφx(x)dxdt ∼ ∥u∥2H−1(E +O(T
1

100 )).

Step 3: construct the trapping direction Ψ .
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Step 1: Asymptotic analysis on B

Lemma
Let p ∈ R, and let φ be defined by φ(x) =

∑3
j=1(ηj+1 − ηj)e

ηj+2x. Assume that
ηj ̸= 0 and moreover, eηjL = 1 and η3

j + ηj + ip = 0, for j = 1, 2, 3. We have∫ L

0

B(τ, x)dx =
E

|τ |2 +O(|τ |−
7
3 ),

where E is defined by E = 1
27
p2L

∑3
j=1

ηj+1−ηj
ηj+2

.

We use

λj = µjτ
1
3 − 1

3µj
τ− 1

3 +
1

81µ5
j

τ− 5
3 +O(τ−2), |τ | ≫ 1

λ̃j = µ̃j τ̄
1
3 − 1

3µ̃j
τ̄− 1

3 +
1

81µ̃5
j

τ̄− 5
3 +O(τ̄−2), |τ | ≫ 1,

where µj = e−
iπ
6

− 2ijπ
3 and µ̃j = e

iπ
6

+ 2ijπ
3 .
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Step 2: Coercive estimates

Proposition

Let u ∈ L2(R+) with u ̸≡ 0, and y ∈ C(R+;L
2(0, L)) ∩ L2

loc

(
R+;H

1(0, L)
)

solution of
KdV with u(t) = 0, y(t, ·) = 0 for t > T . Then, ∃ N(u) ≥ 0 s.t. N(u) ∼ ∥u∥H−1∫ ∞

0

∫ L

0

|y(t, x)|2e−iptφx(x)dxdt = N(u)2
(
E +O(1)T

1
100

)
.

∫ ∞

0

∫ L

0

|y(t, x)|2e−iptφx(x)dxdt =

∫
R
û(τ)û(τ − p)

∫ L

0

B(τ, x)dxdτ

∼
∫
R
û(τ)û(τ − p)(

E

|τ |2 +O(|τ |−
7
3 ))dτ

A key step is to prove ∥⟨Dt⟩−
1
3w∥2L2 ∼ ∥w∥2

H
− 1

3
(1 +O(T ε)), if supp w ⊂ [−T, T ].
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Rough proof

A key step is to prove ∥⟨Dt⟩−
1
3w∥2L2 ∼ ∥w∥2

H
− 1

3
(1 +O(T ε)), if supp w ⊂ [−T, T ].

✽ Based on complex analysis, using Palay-Werner’s Theorem and several special
entire functions, construct w and establish the relation between w and u.

✽ Split high frequency and low frequency, establish error estimates w.r.t. ∥w∥
H

− 1
3

.

✽ Choosing a good cutoff size T β and χ( t
Tβ ) compatible with uncertainty

principles.

✽ Using microlocal techniques to prove commutator estimates.
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Step 3: Construct the trapping direction

Ψ(t, x) = ℜ(Ee−iptφx): trapping direction{
∂tΨ(t, x) + ∂3

xΨ(t, x) + ∂xΨ(t, x) = 0,
Ψ(t, 0) = Ψ(t, L) = ∂xΨ(t, 0) = ∂xΨ(t, L) = 0.

Then, y: solution to KdV with y(0, ·) = εΨ(0, ·) and u = 0,

∥y(t, ·)− εΨ(t, ·)∥L2(0,L) ≲ ε2, for t small.
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Further perspectives

Some related topics for nonlinear KdV

➣ Regularity of the control: In Coron–Koenig–Nguyen, u ∈ H
2
3 (R+); we use

u ∈ H
4
3 (R+). Optimal Hs(R+)? What if L2(R+)?

➣ Size of the control: ∥u∥Hs(R+) < ε. What happens if we allow big control?

➣ Size of initial data: ∥y0∥L2(0,L) < ε. Can we get global/semiglobal controllability
for big data?

Concerning our classification,

➣ Controllability and stability as L → N : ∥y0∥2L2(0,L) ≤ C(T,L)
∫ T

0
|∂xy(t, 0)|2dt.

C(T,L) → ∞, as L → N . But at what rate for T and L?

➣ Exponential stabilization at critical lengths: open in N 3.

➣ Asymptotic stability at critical lengths: open in N 3.
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Further perspectives

Some related topics for nonlinear KdV

➣ Regularity of the control: In Coron–Koenig–Nguyen, u ∈ H
2
3 (R+); we use

u ∈ H
4
3 (R+). Optimal Hs(R+)? What if L2(R+)?

➣ Size of the control: ∥u∥Hs(R+) < ε. What happens if we allow big control?

➣ Size of initial data: ∥y0∥L2(0,L) < ε. Can we get global/semiglobal controllability
for big data?

Concerning our classification,

➣ Controllability and stability as L → N : ∥y0∥2L2(0,L) ≤ C(T,L)
∫ T

0
|∂xy(t, 0)|2dt.

C(T,L) → ∞, as L → N . But at what rate for T and L?

➣ Exponential stabilization at critical lengths: open in N 3.

➣ Asymptotic stability at critical lengths: open in N 3.
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Thank you for your attention!
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